Cited 37 times since 1998 (1.4 per year) source: EuropePMC The Journal of biological chemistry, Volume 273, Issue 45, 1 1 1998, Pages 29905-29914 Structural requirements for O-glycosylation of the mouse hepatitis virus membrane protein. de Haan CA, Roestenberg P, de Wit M, de Vries AA, Nilsson T, Vennema H, Rottier PJ

The mouse hepatitis virus (MHV) membrane (M) protein contains only O-linked oligosaccharides. We have used this protein as a model to study the structural requirements for O-glycosylation. We show that MHV M is modified by the addition of a single oligosaccharide side chain at the cluster of 4 hydroxylamino acids present at its extreme amino terminus and identified Thr at position 5 as the functional acceptor site. The hydroxylamino acid cluster, which is quite conserved among O-glycosylated coronavirus M proteins, is not in itself sufficient for O-glycosylation. Downstream amino acids are required to introduce a functional O-glycosylation site into a foreign protein. In a mutagenic analysis O-glycosylation was found to be sensitive to some particular changes but no unique sequence motif for O-glycosylation could be identified. Expression of mutant M proteins in cells revealed that substitution of any 1 residue was tolerated, conceivably due to the occurrence of multiple UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc transferases). Indeed, MHV M served as a substrate for GalNac-T1, -T2, and -T3, as was demonstrated using an in situ glycosylation assay based on the co-expression of endoplasmic reticulum-retained forms of the GalNAc transferases with endoplasmic reticulum-resident MHV M mutants. The GalNAc transferases were found to have largely overlapping, but distinct substrate specificities. The requirement for a threonine as acceptor rather than a serine residue and the requirement for a proline residue three positions downstream of the acceptor site were found to be distinctive features.

J Biol Chem. 1998 11;273(45):29905-29914