Cited 7 times since 2011 (0.5 per year) source: EuropePMC Radiology, Volume 260, Issue 1, 1 1 2011, Pages 88-97 Corrected tetralogy of Fallot: comparison of tissue doppler imaging and velocity-encoded MR for assessment of performance and temporal activation of right ventricle. van der Hulst AE, Roest AA, Delgado V, Kroft LJ, Holman ER, Blom NA, Bax JJ, de Roos A, Westenberg JJ

Purpose

To compare velocity-encoded (VE) magnetic resonance (MR) imaging with tissue Doppler imaging to assess right ventricular (RV) peak systolic velocities and timing of velocities in patients with corrected tetralogy of Fallot and healthy subjects.

Materials and methods

Local institutional review board approval was obtained; patients or their parents gave informed consent. Thirty-three patients (20 male, 13 female; median age, 12 years; interquartile range [IQR], 11-15 years; age range, 8-18 years) and 19 control subjects (12 male, seven female; median age, 14 years; IQR, 12-16 years; age range, 8-18 years) underwent VE MR imaging and tissue Doppler imaging. Peak systolic velocity and time to peak systolic velocity (percentage of cardiac cycle) were assessed at the RV free wall (RVFW) and RV outflow tract (RVOT). Data were analyzed by using linear regression, paired and unpaired tests, and Bland-Altman plots.

Results

Good correlation and agreement between the two techniques were observed. For peak systolic velocity at RVFW, r = 0.95 (mean difference, -0.4 cm/sec, P < .01), and at RVOT, r = 0.95 (mean difference, -0.4 cm/sec, P = .02). For timing at RVFW, r = 0.94 (mean difference, -0.2%, P = .44), and at RVOT, r = 0.89 (mean difference, -0.5%, P = .01). Peak systolic velocity was reduced in patients with corrected tetralogy of Fallot (at RVFW, median was 8.2 cm/sec [IQR, 6.4-9.7 cm/sec] vs 12.4 cm/sec [IQR, 10.8-13.8 cm/sec], P < .01; at RVOT, 4.7 cm/sec [IQR, 4.1-7.2 cm/sec] vs 10.2 cm/sec [IQR, 8.7-11.2 cm/sec], P < .01). The time delay between RVFW and RVOT was observed, which was significantly shorter in patients with corrected tetralogy of Fallot (median, 5.9% [IQR, 4.9%-7.4%] vs 8.4% [IQR, 6.6%-12.4%], P < .01).

Conclusion

VE MR imaging and tissue Doppler imaging enable assessment of RV systolic performance and timing of velocities at the RVFW and RVOT in patients with corrected tetralogy of Fallot. Both techniques can be used interchangeably to clinically assess velocities and timing of velocities of the RV.

Radiology. 2011 4;260(1):88-97