Cited 2 times since 2009 (0.1 per year) source: EuropePMC Acta physiologica (Oxford, England), Volume 196, Issue 4, 19 3 2009, Pages 375-383 Left ventricular mechanical dyssynchrony is load independent at rest and during endotoxaemia in a porcine model. A'roch R, Steendijk P, Oldner A, Weitzberg E, Konrad D, Johansson G, Haney M

Aim

In diseased or injured states, the left ventricle displays higher degrees of mechanical dyssynchrony. We aimed at assessing mechanical dyssynchrony ranges in health related to variation in load as well as during acute endotoxin-induced ventricular injury.

Methods

In 16 juvenile anaesthetized pigs, a five-segment conductance catheter was placed in the left ventricle as well as a balloon-tipped catheter in the inferior vena cava. Mechanical dyssynchrony during systole, including dyssynchrony time in per cent during systole and internal flow fraction during systole, were measured at rest and during controlled pre-load reduction sequences, as well as during 3 h of endotoxin infusion (0.25 microg kg(-)1 h(-1)).

Results

Systolic dyssynchrony and internal flow fraction did not change during the course of acute beat-to-beat pre-load alteration. Endotoxin-produced acute pulmonary hypertension by left ventricular dyssynchrony measures was not changed during the early peak of pulmonary hypertension. Endotoxin ventricular injury led to progressive increases in systolic mechanical segmental dyssynchrony (7.9 +/- 1.2-13.0 +/- 1.3%) and ventricular systolic internal flow fraction (7.1 +/- 2.4-16.6 +/- 2.8%), respectively for baseline and then at hour 3. There was no localization of dyssynchrony changes to segment or region in the ventricular long axis during endotoxin infusion.

Conclusion

These results suggest that systolic mechanical dyssynchrony measures may be load independent in health and during acute global ventricular injury by endotoxin. More study is needed to validate ranges in health and disease for parameters of mechanical dyssynchrony.

Acta Physiol (Oxf). 2009 3;196(4):375-383