Cited 2 times since 2006 (0.1 per year) source: EuropePMC Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, Volume 220, Issue 4, 1 1 2006, Pages 533-539 Finite element analysis of the long-term fixation strength of cemented ceramic cups. Janssen D, Stolk J, Verdonschot N

Clinical studies have shown that adequate fixation of ceramic cups using bone cement is difficult to achieve. As the cement-ceramic bond strength is low, a satisfactory fixation strength requires a cup design that allows mechanical interlocking, although such a design will probably promote cement cracking and therefore cup loosening in the long term. An investigation has been carried out to establish whether a cemented ceramic cup can be designed in such a way that both a satisfactory initial fixation strength is obtained and cement cracking is reduced to levels found around PE cups functioning well in vivo. By means of finite element analysis, the fatigue loading of three geometrically different cemented acetabular cups, with ceramic and PE material properties, has been simulated, and the severity of the crack patterns produced in the cement has been analysed. Furthermore, the fixation strength has been analysed by simulating a pull-out test prior to and after fatigue testing. All ceramic cups produced much larger amounts of cement damage during fatigue testing than any PE cup, caused by stress concentrations in the cement that were attributable to the high stiffness of the ceramic. Even a completely smooth ceramic cup produced more damage than a sharp-grooved PE cup. Owing to the excessive cement cracking, the fixation strength of the ceramic cups dropped after fatigue loading. It is concluded that cemented ceramic cups have an increased risk of long-term mechanical failure by comparison with PE cups, and that a ceramic cup design that combines sufficient fixation strength with low cement failure may be difficult to achieve.

Proc Inst Mech Eng H. 2006 5;220(4):533-539