Cited 9 times since 2003 (0.4 per year) source: EuropePMC Biochemical pharmacology, Volume 65, Issue 11, 1 1 2003, Pages 1875-1881 Cytosolic beta-glycosidases for activation of glycoside prodrugs of daunorubicin. de Graaf M, Pinedo HM, Quadir R, Haisma HJ, Boven E

Human cytosolic beta-glycosidase is a small monomeric enzyme that is active under physiological conditions, which might be ideal for enzyme-prodrug therapy. We have previously reported the synthesis of a galactoside (DNR-GlA3) and a glucoside (DNR-GsA3) prodrug of daunorubicin. In the present study, we established that cellular uptake of DNR-GlA3 and DNR-GsA3 was low in contrast to that of daunorubicin. Recombinant human beta-glycosidase converted both prodrugs to daunorubicin as shown by liquid chromatography. The kinetics of the conversion of DNR-GlA3 and DNR-GsA3 by human beta-glycosidase, however, was unfavorable as the K(m) values were, respectively, 3- and 6-fold higher than those of another mammalian beta-glycosidase of bovine origin. The V(max) values were, respectively, 3.3 and 8.5nmol/hr/mg as compared to 158.3 and 147.8nmol/hr/mg of the bovine enzyme. Treatment of OVCAR-3 cells with human beta-glycosidase (0.5U/mL) and 0.5 microM DNR-GlA3 or DNR-GsA3 resulted in, respectively, 86 and 81% cell growth inhibition, while the prodrugs alone inhibited growth to only 19 and 1%. Treatment of cells with the bovine enzyme and the prodrugs inhibited cell growth more efficiently. We conclude that the endogenous intracellular beta-glycosidase is not available for extracellular prodrug activation. Thus, the incorporation of the enzyme in enzyme-prodrug therapy might be an elegant approach to achieve tumor-specific prodrug conversion. The efficiency of glycoside prodrug conversion might be improved by design of a prodrug that is more readily activated by human beta-glycosidase or by evolution of the enzyme into a mutant form that displays high activity towards these prodrugs.

Biochem Pharmacol. 2003 6;65(11):1875-1881