Cited 2 times since 2023 (2.3 per year) source: EuropePMC Materials today. Bio, Volume 21, 27 4 2023, Pages 100713 Breathing on chip: Dynamic flow and stretch accelerate mucociliary maturation of airway epithelium <i>in vitro</i>. Nawroth JC, Roth D, van Schadewijk A, Ravi A, Maulana TI, Senger CN, van Riet S, Ninaber DK, de Waal AM, Kraft D, Hiemstra PS, Ryan AL, van der Does AM

Human lung function is intricately linked to blood flow and breathing cycles, but it remains unknown how these dynamic cues shape human airway epithelial biology. Here we report a state-of-the-art protocol for studying the effects of dynamic medium and airflow as well as stretch on human primary airway epithelial cell differentiation and maturation, including mucociliary clearance, using an organ-on-chip device. Perfused epithelial cell cultures displayed accelerated maturation and polarization of mucociliary clearance, and changes in specific cell-types when compared to traditional (static) culture methods. Additional application of airflow and stretch to the airway chip resulted in an increase in polarization of mucociliary clearance towards the applied flow, reduced baseline secretion of interleukin-8 and other inflammatory proteins, and reduced gene expression of matrix metalloproteinase (MMP) 9, fibronectin, and other extracellular matrix factors. These results indicate that breathing-like mechanical stimuli are important modulators of airway epithelial cell differentiation and maturation and that their fine-tuned application could generate models of specific epithelial pathologies, including mucociliary (dys)function.

Mater Today Bio. 2023 6;21:100713