GeroScience, Volume 45, Issue 6, 13 2 2023, Pages 3165-3174 Exploring the possible causal effects of cardiac blood biomarkers in dementia and cognitive performance: a Mendelian randomization study. Zonneveld MH, Trompet S, Jukema JW, Noordam R

Prospective cohort studies have implied associations between blood levels of troponin T, troponin I, NT-proBNP, GDF15, dementia, and cognitive function, without providing evidence favoring possible causality. We aimed to assess the causal associations of these cardiac blood biomarkers with dementia and cognition using two-sample Mendelian randomization (MR). Independent genetic instruments (p < 5e-7) for troponin T and I, N-terminal pro B-type natriuretic peptide (NT-proBNP) and growth-differentiation factor 15 (GDF15) were obtained from previously-performed genome-wide association studies of predominantly European ancestry. Summary statistics for gene-outcome associations in European-ancestry participants, for the two-sample MR analyses, were obtained for general cognitive performance (n = 257,842) and dementia (n = 111,326 clinically diagnosed and "proxy" AD cases, and 677,663 controls). Two-sample MR analyses were performed using inverse variance-weighted (IWV) analyses. Sensitivity analyses to evaluate horizontal pleiotropy included weighted median estimator, MR-Egger, and MR using cis-SNPs only. Using IVW, we did not find evidence for possible causal associations between genetically influenced cardiac biomarkers with cognition and dementia. For example, per standard deviation (SD) higher cardiac blood biomarker, the odds ratio for risk of dementia was 1.06 (95%CI 0.90; 1.21) for troponin T, 0.98 (95%CI 0.72; 1.23) for troponin I, 0.97 (95%CI 0.90; 1.06) for NT-proBNP and 1.07 (95%CI 0.93; 1.21) for GDF15. Sensitivity analyses showed higher GDF15 was significantly associated with higher dementia risk and worse cognitive function. We did not find strong evidence that cardiac biomarkers causally influence dementia risk. Future research should aim at elucidating the biological pathways through which cardiac blood biomarkers associate with dementia.

Geroscience. 2023 5;45(6):3165-3174