Cited 18 times since 2018 (3.3 per year) source: EuropePMC Biochimica et biophysica acta. Molecular and cell biology of lipids, Volume 1864, Issue 3, 5 1 2018, Pages 224-233 Dynamic differences in dietary polyunsaturated fatty acid metabolism in sputum of COPD patients and controls. van der Does AM, Heijink M, Mayboroda OA, Persson LJ, Aanerud M, Bakke P, Eagan TM, Hiemstra PS, Giera M

Introduction

Disturbances in onset and resolution of inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. Dietary polyunsaturated fatty acids (PUFAs) can be converted into lipid mediators here collectively named oxylipins. These include classical eicosanoids, but also pro-resolving mediators. A balanced production of pro-inflammatory and pro-resolving oxylipins is of importance for adequate inflammatory responses and subsequent return to homeostasis.

Objectives

Here we investigated if PUFA metabolism is disturbed in COPD patients.

Methods

Free PUFA and oxylipin levels were measured in induced sputum samples from the Bergen COPD cohort and COPD exacerbation study using liquid chromatography-mass spectrometry. Additionally, effects of whole cigarette smoke on PUFA metabolism in air-liquid interface cultures of primary bronchial epithelial cells were assessed.

Results

Significantly lower levels of free alpha-linolenic acid, linoleic acid and eicosapentaenoic acid (EPA) were detected in sputum from stable COPD patients compared to controls. During acute exacerbation (AE), levels of free arachidonic acid and docosapentaenoic acid were higher than in stable COPD patients. Furthermore, levels of omega-3 EPA- and docosahexaenoic acid-derived oxylipins were lower in sputum from stable COPD patients compared to controls. Cyclooxygenase-2-converted mediators were mostly increased during AE. In vitro studies additionally showed that cigarette smoke exposure may also directly contribute to altered epithelial PUFA metabolism, and indirectly by causing airway epithelial remodelling.

Conclusions

Our findings show significant differences in PUFA metabolism in COPD patients compared to controls, further changed during AE. Airway epithelial remodelling may contribute to these changes. These findings provide new insight in impaired inflammatory resolution in COPD.

Biochim Biophys Acta Mol Cell Biol Lipids. 2018 12;1864(3):224-233