Cited 17 times since 2012 (1.5 per year) source: EuropePMC Cardiovascular research, Volume 97, Issue 1, 12 2 2012, Pages 161-170 Prolongation of minimal action potential duration in sustained fibrillation decreases complexity by transient destabilization. Bingen BO, Askar SF, Schalij MJ, Kazbanov IV, Ypey DL, Panfilov AV, Pijnappels DA

Aims

Sustained ventricular fibrillation (VF) is maintained by multiple stable rotors. Destabilization of sustained VF could be beneficial by affecting VF complexity (defined by the number of rotors). However, underlying mechanisms affecting VF stability are poorly understood. Therefore, the aim of this study was to correlate changes in arrhythmia complexity with changes in specific electrophysiological parameters, allowing a search for novel factors and underlying mechanisms affecting stability of sustained VF.

Methods and results

Neonatal rat ventricular cardiomyocyte monolayers and Langendorff-perfused adult rat hearts were exposed to increasing dosages of the gap junctional uncoupler 2-aminoethoxydiphenyl borate (2-APB) to induce arrhythmias. Ion channel blockers/openers were added to study effects on VF stability. Electrophysiological parameters were assessed by optical mapping and patch-clamp techniques. Arrhythmia complexity in cardiomyocyte cultures increased with increasing dosages of 2-APB (n > 38), leading to sustained VF: 0.0 ± 0.1 phase singularities/cm(2) in controls vs. 0.0 ± 0.1, 1.0 ± 0.9, 3.3 ± 3.2, 11.0 ± 10.1, and 54.3 ± 21.7 in 5, 10, 15, 20, and 25 µmol/L 2-APB, respectively. Arrhythmia complexity inversely correlated with wavelength. Lengthening of wavelength during fibrillation could only be induced by agents (BaCl(2)/BayK8644) increasing the action potential duration (APD) at maximal activation frequencies (minimal APD); 123 ± 32%/117 ± 24% of control. Minimal APD prolongation led to transient VF destabilization, shown by critical wavefront collision leading to rotor termination, followed by significant decreases in VF complexity and activation frequency (52%/37%). These key findings were reproduced ex vivo in rat hearts (n = 6 per group).

Conclusion

These results show that stability of sustained fibrillation is regulated by minimal APD. Minimal APD prolongation leads to transient destabilization of fibrillation, ultimately decreasing VF complexity, thereby providing novel insights into anti-fibrillatory mechanisms.

Cardiovasc Res. 2012 9;97(1):161-170